Decreased miR-29 suppresses myogenesis in CKD.
نویسندگان
چکیده
The mechanisms underlying the muscle wasting that accompanies CKD are not well understood. Animal models suggest that impaired differentiation of muscle progenitor cells may contribute. Expression of the myogenesis-suppressing transcription factor Ying Yang-1 increases in muscle of animals with CKD, but the mechanism underlying this increased expression is unknown. Here, we examined a profile of microRNAs in muscles from mice with CKD and observed downregulation of both microRNA-29a (miR-29a) and miR-29b. Because miR-29 has a complementary sequence to the 3'-untranslated region of Ying Yang-1 mRNA, a decrease in miR-29 could increase Ying Yang-1. We used adenovirus-mediated gene transfer to express miR-29 in C2C12 myoblasts and measured its effect on both Ying Yang-1 and myoblast differentiation. An increase in miR-29 decreased the abundance of Ying Yang-1 and improved the differentiation of myoblasts into myotubes. Similarly, using myoblasts isolated from muscles of mice with CKD, an increase in miR-29 improved differentiation of muscle progenitor cells into myotubes. In conclusion, CKD suppresses miR-29 in muscle, which leads to higher expression of the transcription factor Ying Yang-1, thereby suppressing myogenesis. These data suggest a potential mechanism for the impaired muscle cell differentiation associated with CKD.
منابع مشابه
Inhibition of miR-29 by TGF-beta-Smad3 Signaling through Dual Mechanisms Promotes Transdifferentiation of Mouse Myoblasts into Myofibroblasts
MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression in post-transcriptional fashion, and emerging studies support their importance in regulating many biological processes, including myogenic differentiation and muscle development. miR-29 is a promoting factor during myogenesis but its full spectrum of impact on muscle cells has yet to be explored. Here we describe an analysis o...
متن کاملNF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma.
Studies support the importance of microRNAs in physiological and pathological processes. Here we describe the regulation and function of miR-29 in myogenesis and rhabdomyosarcoma (RMS). Results demonstrate that in myoblasts, miR-29 is repressed by NF-kappaB acting through YY1 and the Polycomb group. During myogenesis, NF-kappaB and YY1 downregulation causes derepression of miR-29, which in turn...
متن کاملElectroacupuncture therapy for muscle atrophy in CKD: is there a needle in the haystack?
Muscle wasting is highly prevalent among patients with CKD. The cellular mechanisms of muscle atrophy have been identified, yet definitive treatment to prevent or reverse this complication is not fully in sight.Despite proven efficacy inpersons without kidney disease, resistance exercise training has not consistently and convincingly been shown to improve lean body mass in patients with CKD.1 S...
متن کاملMicroRNA-155 and Anti-Müllerian Hormone: New Potential Markers of Subfertility in Men with Chronic Kidney Disease
BACKGROUND/AIMS Men with terminal renal failure are often infertile. Anti-müllerian hormone (AMH), a marker of Sertoli cell function, is decreased among men with chronic kidney disease (CKD). Recently, a microRNA, miR-155, has been shown to be a potential marker for subfertility. We studied miR-155 and semen parameters in patients with CKD who were not yet on dialysis. We also aimed to study po...
متن کاملMicroRNA-205 inhibits renal cells apoptosis via targeting CMTM4
Objective(s):MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression. They have important roles in kidney development, homeostasis and disease, and participate in the onset and progression of tubulointerstitial sclerosis and end-stage glomerular lesions that occur in various forms of chronic kidney disease (CKD). In the present study, we elucidated the role of microR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 22 11 شماره
صفحات -
تاریخ انتشار 2011